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Abstract
We consider families of biquadratic curves B = 0 on C

2, defined with respect to
arbitrarily many complex parameters. Due to the fact that these families include
curve intersections across different parameter combinations, they represent a
generalization of the non-intersecting foliations of one-parameter invariant
curves associated with the QRT mapping. We use algebraic methods involving
discriminants to provide a complete classification of the singular curves in these
families. In developing this classification, we exploit the special symmetric
nature of B; namely, that it is a quadratic in x and y whose reflection in the line
y = x is given by a simple change of parameters. We also define a range
of conditions in the biquadratic’s parameters and demonstrate the manner
in which they correspond to different geometric realizations of the singular
curves.

PACS numbers: 02.30.Ik, 02.40.Xx, 02.40.−k

Introduction

A family of biquadratic curves in the complex (x, y)-plane is described by

B(x, y;K1, . . . , Kq) = α(K1, . . . , Kq)x
2y2 + β(K1, . . . , Kq)x

2y + δ(K1, . . . , Kq)xy2

+ γ (K1, . . . , Kq)x
2 + κ(K1, . . . , Kq)y

2 + ε(K1, . . . , Kq)xy

+ ξ(K1, . . . , Kq)x + λ(K1, . . . , Kq)y + µ(K1, . . . , Kq) = 0, (1)

where each of the coefficients α, . . . , µ is an expression in the parameters K1, . . . , Kq ∈ C,
with q � 1. The study of biquadratic curves has a long history, dating back to e.g. Euler (and
his number theoretic results involving biquadratic reciprocity) and Frobenius (see [4]). In
the discrete integrable dynamics context, particular cases of biquadratic curve families appear

1751-8113/08/115203+28$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/11/115203
mailto:japett@maths.unsw.edu.au
mailto:jag.roberts@unsw.edu.au
http://stacks.iop.org/JPhysA/41/115203


J. Phys. A: Math. Theor. 41 (2008) 115203 J Pettigrew and J A G Roberts

in [5] and originally in [10, 11], being preserved in the latter case by integrable birational
mappings of the plane of the form

L : C
2 → C

2 : x ′ = f1(y) − xf2(y)

f2(y) − xf3(y)
, y ′ = g1(x

′) − yg2(x
′)

g2(x ′) − yg3(x ′)
. (2)

The fi and gi are certain quartic polynomials whose coefficients are functions of α, . . . , µ in (1)
(see [5, 10, 11] for an explicit representation of these functions). Typically, the biquadratic (1)
is an elliptic curve and the action of L is equivalent to translation on the associated Weierstrass
curve (see [3, 6]1 for recent work and further references).

Here, however, we are concerned not so much with the dynamics on (1) but on the nature
of the curve itself. In particular, in contrast to [6], we are interested in the case where (1)
is not elliptic owing to its possession of at least one singular point in the affine plane (see
definition 1). We want to know how to find these singular curves in a parameterized family, the
number and location of singular points lying on any given singular curve and, more broadly,
the nature of the geometry of these curves. Importantly, while integrable maps involve families
(1) whose curves are nested and non-intersecting, we want to be able to ask these questions
irrespective of any such foliation condition.

In order to introduce two explicit examples that we meet again throughout the paper, let
K = {K2, . . . , Kq}, and distinguish the first parameter by K1 = t (in the case where q = 2,
we denote K simply by K). We shall call

BQRT(x, y; t, K) = (
αQ1(K)t + αQ0(K)

)
x2y2 +

(
βQ1(K)t + βQ0(K)

)
x2y

+
(
δQ1(K)t + δQ0(K)

)
xy2 +

(
γQ1(K)t + γQ0(K)

)
x2

+
(
κQ1(K)t + κQ0(K)

)
y2 +

(
εQ1(K)t + εQ0(K)

)
xy

+
(
ξQ1(K)t + ξQ0(K)

)
x +

(
λQ1(K)t + λQ0(K)

)
y + µQ1(K)t + µQ0(K)

= 0, (3)

which possesses coefficients that are affine in t, the QRT biquadratic, and

BM(x, y; t, K) = αM(K)x2y2 + βM(K)x2y + δM(K)xy2 + γM(K)x2 + κM(K)y2

+ εM(K)xy + ξM(K)x + λM(K)y + µM(K) − t = 0, (4)

whose t-parameter appears only in the constant coefficient, the McMillan biquadratic (after
[7]). When q = 2, we have chosen for expository reasons to specify t as the representative of
these biquadratics’ level set heights.

This paper closely examines the qualitative behaviour of curve families such as (1), (3)
and (4) under parameter variation, focussing on parameter combinations for which singular
curves emerge. We shall see that by working with a particular set of parameter constraints,
these curves can be classified according to the nature of the singular points they possess
(specifically, by the multiplicity of their x- and y-coordinates when represented as the roots
of certain discriminant functions). In the general case, the simultaneous satisfaction of (up to
six) such parameter constraints defines a hypersurface in some subset of {K1, . . . , Kq}, from
which one can smoothly select parameter combinations associated with a particular singularity
class2.

Before commencing with the theoretical exposition, let us consider by way of motivation
the McMillan biquadratic

BM = 2x2y2 + (3K + 6)x2 + (3K + 6)y2 − (
283
500K2 + 2897

500 K + 1577
250

)
xy

− 8x − 1
5y + K + 1 − t = 0. (5)

1 We thank Professor Duistermaat for sending us a copy of his manuscript.
2 We note that in the algebraic geometric approach [3] to the study of the QRT map acting on (3), considered as a
rational elliptic surface, it is crucial to first identify the type of the singular curves in the curve family.
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K = −6 K = −3.5

K = −5.2 K ≈ −3.1027

K 4.6676 K = 2

Figure 1. Families of biquadratic curves (5) parameterized by t for six different values of K.

Figure 2. A sequence of plots illustrating the bifurcation of singular curves of (5). At (K, t) =
(K∗, t∗) ≈ (−3.1027,−7.8318), (5) possesses two singularities, P1 ≈ (−2.0393, 1.2861) and
P2 ≈ (0.8302, 1.2861), with the same y-coordinate (middle plot). Associated with each K near
K∗ are two singular curves of (5), each with one singular point. They approach one another as K
approaches K∗ from below (represented by the dashed and undashed curves in the left plot). After
merging at K = K∗, the two singular curves dissociate again as K increases beyond K∗ (right
plot).

As K is varied, the topology of each curve family represented by (5) changes. Figure 1 includes
a sample of six such families, where only the real singular level sets are shown.

The sequence of plots on the left-hand side of the figure highlights the fact that at
K ≈ −4.6676, two singular level sets merge at a singular level set characterized by a cusp3.
The same is true at K ≈ −3.1027, except that here the emergent singular level set possesses
an entire horizontal line. A more detailed picture of the latter case is given in figure 2.

Using ideas developed in the ensuing two sections, it will be shown that at any
parameter combination (K, t) satisfying f2X = 240 267K5 + 539 9640K4 + 403 715 31K3 +
115 889 466K2 + 139 488 804K + 916 862 96 = 0 and µ = µM − t = µd,x = (240 267K5 +
552 6990K4 +691 845 81K3 +285 032 766K2 +474 380 604K +313 363 496)/(600 0000(K +
2)), (5) possesses a singular curve of the type represented in the middle plot of figure 2 and

3 Defined to be a point on the curve whose associated cuspidal tangent intersects the curve in a triple root.
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case 2 of table 24. It will also be shown that any such parameter combination lies on the
0-contour of the surface given by discryx(B) (see definition 2), which in a sense made clear by
proposition 1 encodes the singular curve families of the biquadratic. An explicit instance of
such a combination is given in figure 3, which is a real planar plot of discryx(B) for B = BM

of (5). The pair (K, t) ≈ (−3.1027,−7.8318), corresponding to the singular curve in the
middle plot of figure 2, is identified as the point f .

The plan of this paper is as follows. In section 1, we define the singular points under
review. We introduce various discriminants and iterated discriminants of B to establish an
alternative method for computing these points and analysing the qualitative nature of the curves
to which they belong. This leads to a partial classification (table 1) of the singular curves
of (1). We also highlight the important role played by the iterated discriminant discryx(B)

(referred to above) in characterizing these singular curves.
Section 2 includes a range of results validating the necessary and sufficient conditions

listed in table 2, which provide a complete classification of the singular curves of (1) according
to their geometry and the configuration of the discriminant factorizations of (35) (and which,
therefore, extend the classification of table 1).

1. The singular curves of B = 0 and related discriminants

Due to the centrality of their role in this investigation, we begin by defining the singular points
of (1). These points constitute an affine variety whose defining equations, B = ∂B

∂x
= ∂B

∂y
= 0,

are well known. We shall see that the same variety can be defined using the system
B = discrx(B) = discry(B) = 0, whose latter elements (discriminants of B, defined presently)
each consist of one less variable than B. When it comes to computing the biquadratic’s
singularities, this system provides a useful, simpler, alternative to the conventional system.

Remark 1. We stress here that we are concerned with the singular points of (1) in the affine
plane. It is easily shown that, working projectively, B(x, y) = 0 of (1) becomes a homogeneous
triquadratic Bp(X, Y,Z) = 0, where x = X/Z and y = Y/Z. This projective curve possesses
two singular points at infinity: [X1, Y1, Z1] = [1, 0, 0] and [X2, Y2, Z2] = [0, 1, 0].

It will be convenient in what follows to express B as a quadratic in either x or y:

B(x, y) = α2y
2 + α1y + α0

= β2x
2 + β1x + β0 = 0, (6)

where

α2 = αx2 + δx + κ, α1 = βx2 + εx + λ, α0 = γ x2 + ξx + µ

β2 = αy2 + βy + γ, β1 = δy2 + εy + ξ, β0 = κy2 + λy + µ.
(7)

We adopt the notational convention that α2 ≡ 0 if and only if each of the parameters, α, δ

and κ , in α2 vanishes (similarly for β2).
We shall denote the discriminant of B with respect to y (respectively x) by discry(B)

(discrx(B)). We have

discry(B) = α2
1 − 4α0α2

= discry(β2)x
4 + (2βε − 4αξ − 4δγ )x3 + (2βλ + ε2 − 4(δξ + γ κ + αµ))x2

+ (2ελ − 4κξ − 4δµ)x + discry(β0) (8)

4 Provided αε − βδ = (−283K2 − 2897K − 3154)/250 �= 0 and discrx(P2X) = (−208 650 24K4 −
914 441 0112K3 − 542 545 182 72K2 − 107 952 832 512K − 690 875 924 48)/625 �= 0.
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and

discrx(B) = β2
1 − 4β0β2

= discrx(α2)y
4 + (2δε − 4αλ − 4βκ)y3 + (2δξ + ε2 − 4(βλ + γ κ + αµ))y2

+ (2εξ − 4γ λ − 4βµ)y + discrx(α0). (9)

Putting these definitions on a more general footing, note that for any polynomial

F(z) = cnz
n + · · · + c0 ∈ C[z] (10)

(n > 1, cn �= 0) with roots r1, . . . , rn,

discrz(F ) = c2n−2
n

n∏
i,j
i<j

(ri − rj )
2 = (−1)n(n−1)/2

cn

resz

(
F,

∂F

∂Z

)
, (11)

where resz

(
F, ∂F

∂z

)
—the resultant of F and ∂F

∂z
with respect to z—is typically calculated

using the Sylvester matrix (see [2, p77] and (17) for an example). Note that when n = 1,
discrz(F ) := 1. Throughout what follows, we make use of the following important result.

Lemma 1. There exist polynomials U(c0, . . . , cn), V (c0, . . . , cn) such that for F in (10),

discrz(F ) = (−1)n(n−1)/2

cn

(
U

∂F

∂z
+ V F

)
. (12)

Proof. See (11) and theorem 1.3.2 of [9]. �

Definition 1. The singular points of (1) comprise the variety

BS =
{
P ∈ C

2 × C
q

∣∣∣∣B(P ) = ∂B

∂x
(P ) = ∂B

∂y
(P ) = 0

}
. (13)

If for some fixed parameter combination K1, . . . , Kq , (1) possesses at least one element of BS ,
the entire set of points satisfying (1) shall be referred to as a singular curve. If the biquadratic
is either QRT or McMillan, we shall use the equivalent description singular level set (defined
by some height t for fixed K).

Defining

B∗
S = {P ∈ C

2 × C
q |B(P ) = discry(B)(P ) = discrx(B)(P ) = 0}, (14)

we have

Lemma 2. If α2 �≡ 0 and β2 �≡ 0, then BS = B∗
S .

Proof. The fact that for any quadratic Q = c2z
2 + c1z + c0,

discrz(Q) =
(

∂Q

∂z

)2

− 4c2Q (15)

ensures that if P ∈ BS then B(P ) = ∂B
∂x

(P ) = ∂B
∂y

(P ) = 0 and so discry(B)(P ) =
discrx(B)(P ) = 0. The converse is shown by a similar argument. �

Note that if α2 ≡ 0, then discry(B) = 1 and clearly B∗
S = ∅. But BS �= ∅ in this case as for

B = K1x
2y2+K2x

2y+K3xy2+K4x
2+K5y

2+K6xy+K7x+K8y+K9 = x2y+x2+xy+x+y+1,
we have ((−1 +

√
3)/2,−1; 0, 1, 0, 1, 0, 1, 1, 1, 1) ∈ BS .

Also note that the presence of the squared term on the right-hand side of (15), which
ensures ∇B(P ) = (0, 0) when B, discry(B) and discrx(B) are zero, is special. If F

5
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is a non-biquadratic polynomial in x and y with coefficients in C, only the weaker claim
that

P : F(P ) = ∂F

∂x
(P ) = ∂F

∂y
(P ) = 0 ⇒ F(P ) = discry(B)(P ) = discrx(B)(P ) = 0 (16)

can be made. This is because lemma 1 ensures that each of discry(F ) and discrx(F ) is
expressible as a linear combination of F and its partial derivatives.

To see why the reverse implication does not apply here, consider F = y((x − 1)2y2 + x).
This polynomial, as well as discry(F ) = −4(x −1)2x3 and discrx(F ) = −y2(2y −1)(2y +1),
vanishes at (x, y) = (1, 0). But ∂F

∂y
(1, 0) = 3y2x2 − 6y2x + 3y2 + x|(x,y)=(1,0) = 1. The

0-contour of F in this case is a ‘horizontal fork’ with three left-oriented tines meeting at the
origin. The central tine is the horizontal axis itself.

Definition 2. We shall denote the discriminant of discry(B) (respectively discrx(B)) with
respect to x (y) by discryx(B) (discrxy(B)). It is easily verified that discryx(B) = discrxy(B)5,
meaning that the two discriminants can be referred to interchangeably.

This so-called ‘double discriminant’ (which consists of 1010 terms in α, . . . , µ and is a
quintic in µ) plays a special role in characterizing the singular curves of (1). In particular,
it helps us to determine the maximum number of singular points contained within any given
singular curve and to more easily locate these points. In the QRT and McMillan cases, it also
allows us to specify a bound on the number of singular level sets possessed by either of these
biquadratics for a fixed combination of parameters K.

Lemma 3. Assume α2, β2 �≡ 0. Then there exist polynomials F1, F2, F3 ∈ C[x, y] with
coefficients in K1, . . . , Kq for which discryx(B) = F1B + F2

∂B
∂x

+ F3
∂B
∂y

.

Proof. The proof is constructive. For the quartic F(z) = c4z
4 + · · · + c0, the polynomials

f1 = 32c4
2c3c2c0z − 112c4

2c3c2c1z
2 − 80c4c3

2c2c1z + 16c4c2
4 − 4c3

2c2
3 + 256c4

3c0
2

− 6c3
3c2

2z + 96c4
2c2c1

2 + 18c3
4c1z + c4c3

2c1
2 + 32c4

2c2
3z2 − 128c4

2c2
2c0

+ 144c4
3c1

2z2 + 15c2c3
3c1 − 27c3

4c0 + 24c4c3c2
3z − 8c4c3

2c2
2z2 + 24c4c3

3c1z
2

− 16c4
2c2

2c1z + 120c4
2c3c1

2z + 48c4
2c3

2c0z
2 − 68c4c2

2c3c1 − 192c4
3c1c0z

+ 144c2c3
2c4c0 − 128c4

3c2c0z
2 − 176c4

2c0c3c1,

f2 = 18c4c1
2c2c3 − c4c3

2c1
2z − 6c4c3

3c1z
3 − 39c4

2c3c1
2z2 + 4c4

2c2
2c1z

2 − 42c4
2c2c1

2z

− 7c3
3c2c1z − 12c2

2c3c4c0 + 48c4
3c1c0z

2 + 28c4
2c3c2c1z

3 + 27c4c3
2c2c1z

2

+ 32c4c3c2
2c1z − 50c4c3

2c2c0z − 7c3
2c4c0c1 + 48c1c4

2c2c0 − 12c4
2c3

2c0z
3

+ 56c4
2c3c1c0z − 3c4c3

3c0z
2 + 32c4

3c2c0z
3 + 48c4

2c2
2c0z − 8c4c2

4z − 8c4
2c2

3z3

+ 2c3
2c2

3z − 16c3c4
2c0

2 − 64c4
3c0

2z + c1c2
2c3

2 − 4c4c2
3c1 − 6c3

4c1z
2 − 36c4

3c1
2z3

+ 2c3
3c2

2z2 + 3c3
3c2c0 + 9c3

4c0z − 4c3
3c1

2 − 27c4
2c1

3 − 8c4c3c2
3z2 + 2c4c3

2c2
2z3

(17)

ensure that

discrz(F ) = f1F + f2
∂F

∂z
. (18)

Taking F(x) = discry(B) and substituting each of the five coefficients in (8) for their
correspondents c4, . . . , c0 in (17), we have polynomials f̄1 and f̄2 for which

discryx(B) = f̄1 discry(B) + f̄2
∂

∂x
(discry(B)). (19)

5 This equality is also shown in [3, 4].
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The fact that both discry(B) (care of (15)) and

∂

∂x
discry(B) = 2

∂2B

∂x∂y

∂B

∂y
− 4

∂α2

∂x
B − 4α2

∂B

∂x
(20)

can be expressed as linear combinations of B, ∂B
∂x

and ∂B
∂y

, gives

discryx(B) = F1B + F2
∂B

∂x
+ F3

∂B

∂y
, (21)

where

F1 = −4

(
f̄1α2 + f̄2

∂α2

∂x

)
,

F2 = −4f̄2α2,

F3 = f̄1
∂B

∂y
+ 2f̄2

∂2B

∂x∂y
.

(22)

�

For reference, the discriminant of the quartic F(z) = c4z
4 · · · + c0 used above is given by

discrz(F ) = c2
1c

2
2c

2
3 − 4c3

1c
3
3 − 4c2

1c
3
2c4 + 18c3

1c2c3c4 − 27c4
1c

2
4 + 256c3

0c
3
4

+ c0
(−4c3

2c
2
3 + 18c1c2c

3
3 + 16c4

2c4 − 80c1c
2
2c3c4 − 6c2

1c
2
3c4 + 144c2

1c2c
2
4

)
+ c2

0

(−27c4
3 + 144c2c

2
3c4 − 128c2

2c
2
4 − 192c1c3c

2
4

)
. (23)

Example 1. For the polynomial BQRT = x2y + Ky2x + x2 + tx + K , formulae (22) look like

F1 = −256K4(−16t2K3 + 72x3K2 + 12x2t2K + 64x2t2K2 + 64K4 + 72tK3 + 27K3

− 54txK2 − 128txK3 − 144t2xK2 − 192x2K3 + 84tx3K + 32t3xK2 − 16t3K2

− 81x2K2 − 212x2tK2 + 27x3K − 24t3x3 + 64x2t3K − 24t2x3K + 32t4xK),

F2 = 256K4(32t3xK2 + 32x2t3K + 32t4xK − 8t3x3 + 32x2t2K2 − 8t2x3K − 64K4

+ 4xK3 − 39x2K2 + 24x3K2 + 9x3K − 96x2K3 + 16t3K2 − 72tK3 + 16t2K3

− 108x2tK2 + 28tx3K − 112txK3 − 128t2xK2 + 4x2t2K − 42txK2 − 27K3)x,

F3 = −256K4(−24x3K2y + 8t2x3K − 28tx3K − 27yK3 − 64yK4 − 27xK2 − 64xK3

+ 3x2K2 + 21K2x2y − 72K3ty + 16t3K2y + 16t2K3y + 16x2t4 + 52tK2x2y

− 16t3Kx2y − 16t2K2x2y − 9yx3K + 2yxK3 − 52x2tK2 − 60x2t2K − 18x2tK

+ 8t2x3Ky + 16x2t3K + 16t3xK + 8t3x3y + 16t2xK2 + 8t3x3 − 28tx3Ky + 8t2xK2y

+ 48K3x2y + 8yxtK3 − 9x3K + 6tK2xy − 24x3K2 − 72txK2 − 4t2Kx2y).

For the remainder of this paper, we adopt the following.

Assumption 1. The discriminants discrx(α2) and discry(β2) (see (7)) are non-zero.

A clear consequence of this assumption is that α2 �≡ 0, β2 �≡ 0 (as, for example,
α2 ≡ 0 ⇔ α = δ = κ = 0 ⇒ discrx(α2) = 0).

Proposition 1.

(a) If P ∈ BS , then discryx(B)(P ) = 0 and

(i) the parameter combination K1, . . . , Kq for the singular curve containing P lies on
the 0-contour of discryx(B);

(ii) the x-coordinate (y-coordinate) of P is a multiple zero of discry(B) (discrx(B)).

7
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(b) Conversely, suppose B(x, y;K1, . . . , Kq) is such that K1, . . . , Kq give discryx(B) = 0.
Then B = 0 possesses at least one point P = (x ′, y ′) ∈ BS , where x ′ is a multiple zero
of discry(B) and y ′ is a multiple zero of discrx(B).

(c) If B = 0 possesses more than one singular point, these points share no more than two
x-coordinates and no more than two y-coordinates. The maximum number of singular
points belonging to any singular curve of B = 0 is 4.

Proof.

(a) If P ∈ BS , then discryx(B)(P ) = (
F1B + F2

∂B
∂x

+ F3
∂B
∂y

)∣∣
(x,y)=P

= 0 follows directly
from definition 1 and lemma 3. Statement (i) reiterates that the double discriminant is just
a function of the parameters in the biquadratic B = 0. For statement (ii), the vanishing
of discryx(B) ensures that both discry(B) and discrx(B) have a multiple root. But
lemma 2 and (20) show that the x-coordinate of P is such a root for discry(B). Similarly,
lemma 2 and the corresponding version of (20) for ∂

∂y
(discrx(B)) show that the y-

coordinate of P makes discrx(B) and its derivative both vanish.
(b) The given assumption ensures that there are roots x ′ of discry(B) and y ′ of discrx(B) for

which ∂
∂x

discry(B) = 0 and ∂
∂y

discrx(B) = 0 respectively (i.e. whose multiplicities are
greater than 1). In order to establish that P = (x ′, y ′) ∈ BS , we must consider two cases.
First, suppose α2(x

′) = 0. Then (15) gives ∂B
∂y

(x ′, y) = 0 (for any y) and so it follows

by (20) that ∂α2
∂x

(x ′)B(x ′, y) = 0 and hence also B(x ′, y) = 0 (as ∂α2
∂x

(x ′) = 0 combined
with α2(x

′) = 0 would contradict assumption 1). Now (15) implies ∂B
∂x

(x ′, y ′) = 0 and
we are done.

Second, suppose α2(x
′) �= 0. For ŷ = − α1

2α2

∣∣
x=x ′ , we have

B(x ′, ŷ) = α2

(
y +

α1

2α2

)2

− discry(B)

4α2

∣∣∣∣
(x,y)=(x ′,ŷ)

= 0. (24)

Thus (15) provides ∂B
∂y

(x ′, ŷ) = 0 and so ∂B
∂x

(x ′, ŷ) = 0 (by (20)). Now by (a)(ii)
(x ′, ŷ) ∈ BS ensures ŷ is a multiple root of discrx(B), and so we can assume without loss
of generality that ŷ = y ′.

(c) Since discry(B) and discrx(B) are quartics in x and y respectively, (a)(ii) ensures that for
any combination of K1, . . . , Kq associated with a singular curve of B = 0, the set of
singular points belonging to B = 0 must share no more than two x-coordinates and no
more than two y-coordinates. Clearly, the maximum cardinality of such a set is 4. �

Remark 2. As noted in the introduction, for fixed parameters the biquadratic (1) is
generically an elliptic curve [3, 6], and so can be birationally transformed to the Weierstrass
form Y 2 = X3 + W1X + W0. It is shown in [8] that discryx(B) = 
/16, where

 = −16

(
4W 3

1 + 27W 2
0

)
is the discriminant of the associated Weierstrass.

Remark 3. It is clear from the proof of proposition 1(b) that any point P = (x ′, y ′) will be
a singular point of B = 0 provided either x ′ and y ′ are the sole multiple roots of discry(B)

and discrx(B) respectively or x ′ is one of two distinct double roots of discry(B) and y ′ is
the sole multiple root of discrx(B); or y ′ is one of two distinct double roots of discrx(B) and
x ′ is the sole multiple root of discry(B). We shall see in section 2 that the only situation in
which pairings of multiple roots of these discriminants are not automatically singular is where
discry(B) and discrx(B) each possess distinct double roots (see example 4).

The vanishing of discryx(B) at any combination of parameters K1, . . . , Kq associated
with a singular point of (1) restricts the number of singular level sets possessed by BQRT = 0
and BM = 0 to a maximum of 12 and 5, respectively.
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Figure 3. A section of the 0-contour of discryx(BM) in R
2 associated with (5). The inset highlights

three points (K, t) at which the multiplicity of the t-zeros changes (K ≈ −2.033,−1.985) or
where discrx(α2) = discry(β2) = −24(K + 2) vanish. The singular points of the 0-contour
labelled a, b, c, d, e and f are associated with singular curves of (5) represented in cases 2, 3, 3, 2,
5 and 2 of table 2 respectively. For example, the parameter combination denoted by e corresponds
to the cuspidal singular curve at the bottom of the lower left-hand side of figure 1, whereas f

corresponds to the singular curve in the centre plot of figure 2.

Lemma 4. For each fixed K, (3) possesses no more than 12 singular level sets.

Proof. It is sufficient to show that when considered as a polynomial in t, discryx(BQRT) has
maximum degree 12. Let c0, . . . , c4 represent the coefficients of discry(BQRT) in x. Since t is
affine in each of αi’s of discry(BQRT) = α2

1 − 4α2α0, its presence in each of the coefficients
of discryx(BQRT) is quadratic. The result follows by counting degrees on the right-hand side
of (23). �

The bound for the singular level sets of BM is determined by a similar approach.

Lemma 5. For each fixed K, (4) possesses no more than five singular level sets.

Proof. Since the presence of t in BM is affine and isolated to the coefficient α0, its presence in
discry(BM) is also affine and isolated to c2, c1 and c0 (where ci is defined as the coefficient of
x ′ in discry(BM)). The result follows by counting degrees in (23). �

Example 2. Figure 3 illustrates some of the complexity underlying the McMillan curve family
(5). It can be seen that at each K ∈ [−10, 1], discryx(BM) yields five or less zeros in t, only
losing or gaining solutions at points (K, t) where the multiplicity of the zeros changes or
where the leading coefficient of discryx(BM) in t vanishes.

As we have seen, proposition 1 focuses attention on the roots of discry(B) and discrx(B)

when the biquadratic (1) is singular. The next proposition classifies the various combinations of
multiple roots of discry(B) and discrx(B) in the singular case, providing necessary conditions
for them to occur. To understand the result, we introduce a second global assumption (in
addition to assumption 1), a parameter exchange procedure and a range of functions in the
coefficients of (1).

With the exception of proposition 5 and cases (b) and (c) of propositions 3 and 4 and the
corollaries that follow them, we adopt

9
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Assumption 2.

� = β(αε − βδ) − 2α(αξ − δγ ) and � = δ(αε − βδ) − 2α(αλ − βκ) (25)

are non-zero.

Definition 3. The procedure V E = CE◦PE exchanges the elements of (x, y, β, δ, γ, κ, ξ, λ)

wherever they appear in a given expression with their corresponding elements in
(y, x, δ, β, κ, γ, λ, ξ). It acts by first applying PE to exchange the parameters in the
expression, and then applying CE to exchange the coordinates.

Remark 4. Note that B = 0 of (1) is invariant under V E. Further, note that when B = 0
is a singular curve possessing (up to four) singular points (xi, yi), with 1 � i � n and
n = 1, 2, 3 or 4 (via proposition 1(c)), the fact that PE(B) = 0 is the reflection of B = 0 in
the line y = x ensures that PE(B) = 0 is also a singular curve possessing n singular points,
(yi, xi). We shall see later, when we come to classify the singular curves of (1), that invoking
this symmetry principle means that certain cases follow immediately from others.

The following functions in α, . . . , λ play a central role in the classification of the singular
curves of (1):

f2X = resy(β2, β1) = (αξ − δγ )2 − (αε − βδ)(βξ − γ ε), (26)

f2Y = resx(α2, α1) = (αλ − βκ)2 − (αε − βδ)(δλ − κε), (27)

f2XY = discrx(α2)f2X − discry(β2)f2Y , (28)

f3XY is a polynomial in α, . . . , λ with the leading term − 6912λ4ξ 4α8 in α. (29)

Note that f3XY has not been given explicitly as it consists of 1128 terms (though a formula for
it is provided in (78)). Also note that

f2X = U2Xβ2 + V2Xβ1, f2Y = U2Y α2 + V2Y α1, (30)

where

U2X = δ(αε − βδ)y + ε(αε − βδ) − δ(αξ − δγ ),

V2X = −α(αε − βδ)y − β(αε − βδ) + α(αξ − δγ )

and U2Y = PE(U2X), V2Y = PE(V2X).

The geometrical significance of the fact that PE(f2X) = f2Y and PE(f3XY ) = f3XY will be
seen in section 2.

The quantities in (25) are related to f2X and f2Y by

�2 = 4α2f2X + discry(β2)(αε − βδ)2,

�2 = 4α2f2Y + discrx(α2)(αε − βδ)2.
(31)

Finally, we lay out a variety of special values that appear frequently in the ensuing proofs
and discussions:

xm = 2αξ + 2δγ − βε

2 discry(β2)
, ym = 2αλ + 2βκ − δε

2 discrx(α2)
= PE(xm), (32)

x∗ = βκ − αλ

αε − βδ
, y∗ = δγ − αξ

αε − βδ
= PE(x∗), (33)

10
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Table 1. The singular curves of (1) can be classified with respect to various combinations of
factorizations of discry(B) and discrx(B) as given in (35). (#SP stands for the number of singular
points.)

Case no (a, b, c) (d, e, f ) Necessary conditions on B = 0 of (1) #SP

1 (2, 1, 1) (2, 1, 1) discryx(B) = 0 1
2 (2, 2, 0) (2, 1, 1) µ = µd,x and f2X = 0orf2XY = 0 2
3 (2, 1, 1) (2, 2, 0) µ = µd,y and f2Y = 0orf2XY = 0 2
4 (2, 2, 0) (2, 2, 0) µ = µd,x = µd,y and f2XY = 0 2, 3 or 4
5 (3, 1, 0) (3, 1, 0) µ = µt and f3XY = 0 1
6 (4, 0, 0) (3, 1, 0) µ = µd,x , f2X = discrx(P2X) = 0 and f2XY �= 0 1
7 (3, 1, 0) (4, 0, 0) µ = µd,y , f2Y = discry(P2Y ) = 0 and f2XY �= 0 1
8 (4, 0, 0) (4, 0, 0) µ = µd,x and f2XY = discrx(P2X) = 0 1

and

µd,x =
discry(β2)(βε − 2αξ − 2δγ )(ε2 + 2βλ − 4δξ − 4γ κ)

−2 discry(β2)
2(ελ − 2κξ) − (βε − 2αξ − 2δγ )3

4 discry(β2)�
, µd,y = PE(µd,x)

µt = b2a0a2 − b0a
2
2 − b3a1a0

b1a
2
2 + b3a

2
1 − b2a1a2 − b3a0a2

,

(34)

where the coefficients ai and bi are given in (70) and (73) respectively.

Proposition 2. Suppose B(x1, y1;K1, . . . , Kq) = 0 of (1) is singular, i.e. such that K1, . . . , Kq

satisfy discryx(B) = 0 by proposition 1(a)(i). Then for these parameter values, the exponents
a, b, c, d, e and f in

discry(B) = discry(β2)(x − x1)
a(x − x2)

b(x − x3)
c

discrx(B) = discrx(α2)(y − y1)
d(y − y2)

e(y − y3)
f (35)

are such that 2 � a, d � 4 and 0 � b, c, e, f � 2. Necessary conditions for the various
factorizations of these discriminants are given in table 1.

Proof. Recall that explicit representations of the quartics discry(B) and discrx(B) are given
in (8) and (9), respectively. Throughout this proof we make use of Vieta’s well-known
formulae relating the coefficients of a quartic z4 + c3z

3 + c2z
2 + c1z + c0 to its roots (see [1]).

In setting

z4 + C3z
3 + C2z

2 + C1z + C0 = (z − z1)
2(z − z2)(z − z3), (36)

we deviate slightly from Vieta’s formulation by requiring that the quartic possess at least one
multiple root (care of proposition 1(a)(ii))). In this case, we have

−2z1 − z2 − z3 = C3

z2
1 + 2z1(z2 + z3) + z2z3 = C2

−z2
1(z2 + z3) − 2z1z2z3 = C1

z2
1z2z3 = C0.

(37)

11
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When applied to discry(B)/discry(β2), the coefficients Ci look like

Cx,3 = 2(βε − 2αξ − 2δγ )

discry(β2)

Cx,2 = ε2 + 2βλ − 4δξ − 4κγ − 4αµ

discry(β2)

Cx,1 = 2(ελ − 2κξ − 2δµ)

discry(β2)

Cx,0 = λ2 − 4κµ

discry(β2)
,

(38)

noting that we index with an x to separate these coefficients from their counterparts,
Cy,i = PE(Cx,i), belonging to discrx(B)/discrx(α2).

Case 1. Observe that the assumption z4 + C3z
3 + C2z

2 + C1z + C0 possesses a multiple root
implies that the quartic’s discriminant with respect to z is zero (by (11)). An explicit expression
for this discriminant is given on the right-hand side of (23), with ci = Ci (i = 0, . . . , 3) and
c4 = 1. The fact that this discriminant is equal to discryx(B)/discry(B)6 when each Ci is
replaced with its correspondent in (38) explains why discryx(B) = 0 in each of the cases of
table 1.

Case 2. When z1 = x1 and z2 = z3 = x2 (with x1 �= x2) and Ci = Cx,i in (37), we have

−2(x1 + x2) = Cx,3 (39)

2x1x2 + (x1 + x2)
2 = Cx,2 (40)

−2x1x2(x1 + x2) = Cx,1 (41)

x2
1x2

2 = Cx,0, , (42)

Combining (39) with (40) on the one hand and (39) with (41) on the other gives expressions
for x1, x2 in Cx,i that together ensure

C3
x,3 − 4Cx,3Cx,2 + 8Cx,1 = 0. (43)

Assuming Cx,3 �= 0, the left-hand side of this equation is affine in µ and solves to give
µ = µd,x . Further manipulation of (39)–(42) provides

C2
x,1 − C2

x,3Cx,0

∣∣
µ=µd,x

= 0 ⇔ 64x2
mf2Xf2XY

[discry(β2)�]2
= 0, (44)

and this implies

f2Xf2XY = 0. (45)

Finally, it can be shown that

x1 + x2

2
= −Cx,3

4
= xm (46)

(via (39)) and that x1, x2 are the zeros of

P ′
2X = 2Cx,3x

2 + C2
x,3x + 2Cx,1. (47)

When denominators and non-zero factors are cleared and µ is replaced with µd,x , (47) becomes

P2X = a2Xx2 + b2Xx + c2X = a2X(x − xm)2 − discrx(P2X)

4a2X

, (48)

12
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where
a2X = discry(β2)�

b2X = −2xmdiscry(β2)�

c2X = 2δf2X + discry(β2)(λ(αε − βδ) − 2κ(αξ − δγ )).

In the case where Cx,3 = 0, x1 = −x2 by (39) and so Cx,1 = 0 by (41). This gives

2αξ + 2δγ − βε = 0 (49)

2δµ + 2κξ − ελ = 0. (50)

Assuming α �= 0 and δ �= 0, these equations solve to give ξ = ξ ′ = (βε − 2δγ )/2α and
µ = µ′ = (αελ + 2δγ κ − βκε)/2αδ = µd,x |ξ=ξ ′ and manipulation of (40) and (42) ensures

C2
x,2 − 4Cx,0

∣∣
(ξ,µ)=(ξ ′,µ′) = 0 ⇔ 16f2Xf2XY

δ2 discry(β2)4

∣∣∣∣
ξ=ξ ′

= 0 ⇒ f2Xf2XY = 0. (51)

Clearly, xm = −Cx,3

4 = 0 and x1, x2 are the zeros of x2 + Cx,2

2 .
Assuming α = 0, we know by assumption 1 that β �= 0, δ �= 0 and so (49) and (50) solve

to give ε = ε′ = 2δγ /β and µ = µ′′ = (δγ λ − βκξ)/βδ = µd,x |(α,ε)=(0,ε′). This ensures

C2
x,2 − 4Cx,0

∣∣
(α,ε,µ)=(0,ε′,µ′′) = 0 ⇔ 16f2Xf2XY

δ2 discry(β2)4

∣∣∣∣
(α,ε)=(0,ε′)

= 0 ⇒ f2Xf2XY = 0. (52)

xm and x1, x2 are as in the previous subcase.
Assuming δ = 0 gives α �= 0 and κ �= 0 by assumption 1, and (49) and (50) together

imply ξ = βε/2α = ελ/2κ ⇒ −ε(αλ − βκ)/2ακ = 0. But δ = ε = ξ = 0 ⇒ � = 0 and
δ = αλ − βκ = 0 ⇒ � = 0, both of which contradict assumption 2.

Case 3. A set of coefficient manipulations similar to those above establishes in this case that

µ = µd,y = PE(µd,x) (53)

y1 + y2

2
= ym = PE(xm) (54)

f2Y f2XY = 0, (55)

and P2Y (yi) = 0 where P2Y = V E(P2X) in the case where Cy,3 �= 0 and
(
y2 + Cy,2

2

)
(yi)

otherwise.

Case 4. In this case, we know from cases 2 and 3 that f2X = 0 or f2XY = 0 and f2Y = 0 or
f2XY = 0. By (28) this implies f2XY = 0. We also know that µ = µd,x = µd,y , a relationship
confirmed by the easily verified fact that

f2XY |(µd,x − µd,y). (56)

We now consider the cases where (36) possesses a triple root in x or y. But before
analysing these, we note that a � 3 ⇔ d � 3 (meaning that no combination such as
(a, b, c)(d, e, f ) = (3, 1, 0)(2, 1, 1) appears in table 1). This is explained by the easily
verified relationship

P3Y = P3X + 12

(
∂α2

∂x

∂B

∂x
− ∂β2

∂y

∂B

∂y

)
(57)

between the functions

P3X = ∂2

∂x2
discry(B)

= 12 discry(β2)x
2 − 24 discry(β2)xmx + 2(2βλ + ε2 − 4(δξ + γ κ + αµ)) (58)

13
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and

P3Y = ∂2

∂y2
discrx(B)

= 12 discrx(α2)y
2 − 24 discrx(α2)ymy + 2(2δξ + ε2 + −4(βλ + γ κ + αµ)). (59)

Now if a � 3 then it must be true that P3X(x1) = 0. Since (x1, y1) is singular we also
know that ∂B

∂x
(x1, y1) = ∂B

∂y
(x1, y1) = 0. This ensures, via (57), that P3Y (y1) = 0 and hence

that d � 3. The fact that d � 3 ⇒ a � 3 is established by a similar argument.

Case 5. When z1 = z2 = x1, z3 = x2 (with x1 �= x2) and Ci = Cx,i in (37), we have

−3x1 − x2 = Cx,3 (60)

3x2
1 + 3x1x2 = Cx,2 (61)

−x3
1 − 3x2

1x2 = Cx,1 (62)

x3
1x2 = Cx,0. (63)

Substituting x2 of (60) into (61) and (62) gives

6x2
1 + 3Cx,3x1 + Cx,2 = 0 (64)

8x3
1 + 3Cx,3x

2
1 − Cx,1 = 0 (65)

respectively. Observe that 8Cx,2 − 3C2
x,3 divides the discriminant of the quadratic in (64) with

respect to x1 and so 8Cx,2 − 3C2
x,3 �= 0 else x1 = −Cx,3

4 , implying via (60) that x2 = x1.
Equations (64) and (65) now yield

xt = x1 = Cx,3Cx,2 − 6Cx,1

8Cx,2 − 3C2
x,3

, (66)

and a similar calculation using the identities corresponding to (60)–(63) for
discrx(B)/discrx(α2) yields

yt = y1 = PE(xt ). (67)

(Note that 8Cy,2 − 3C2
y,3 �= 0 by the same argument as for 8Cx,2 − 3C2

x,3 above, recalling our
assumption y1 �= y2 for this case.)

We shall now use two equations, (68) and (71), in the coefficients Cx,i (which are true by
direct substitution of (60)–(63)) to compute µt and show that f3XY = 0. The identity

F ′
x,µ = C2

x,2 − 3Cx,3Cx,1 + 12Cx,0 = 0 (68)

is equivalent to

Fx,µ

discry(β2)2
= 0, (69)

where

Fx,µ = 16α2µ2 + 8(−6κβ2 − 6γ δ2 − αε2 − 2αξδ − 2αβλ + 28γακ + 3δβε)µ

+ 16γ 2κ2 − 48λ2αγ − 16ξδγ κ − 16λβγ κ − 8γ ε2κ + 24λεδγ − 48κξ 2α

+ 24λεξα + 24ξεκβ + 16ξ 2δ2 − 8ε2δξ − 16λβξδ + 16λ2β2 + ε4 − 8λβε2

= a2µ
2 + a1µ + a0. (70)

Similarly, the identity

G′
x,µ = 54C3

x,3Cx,1 + 64C3
x,2 + 216C2

x,1 − 18C2
x,3C

2
x,2 − 216Cx,3Cx,2Cx,1 = 0 (71)

14
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is equivalent to

Gx,µ

discry(β2)4
= 0, (72)

where

Gx,µ = 864(βε − 2αξ − 2δγ )3(ελ − 2κξ − 2δµ)

− 72(βε − 2αξ − 2δγ )2(2βλ + ε2 − 4(δξ + γ κ + αµ))2

− 864 discry(β2)(βε − 2αξ − 2δγ )(2βλ + ε2 − 4(δξ + γ κ + αµ))(ελ − 2κξ − 2δµ)

+ 64 discry(β2)(2βλ + ε2 − 4(δξ + γ κ + αµ))3

+ 864 discry(β2)
2(ελ − 2κξ − 2δµ)2

= b3µ
3 + b2µ

2 + b1µ + b0. (73)

Assuming α �= 0, (69) and (72) solve to give

µt = b2a0a2 − b0a
2
2 − b3a1a0

b1a
2
2 + b3a

2
1 − b2a1a2 − b3a0a2

. (74)

Also, the fact that

resµ(Fx,µ,Gx,µ) = −707 7888α2 discry(β2)
2f3XY (75)

ensures, via lemma 1, that there exist expressions U and V for which6

UFx,µ + V Gx,µ = −707 7888α2 discry(β2)
2f3XY , (76)

whose vanishing left-hand side (care of (69) and (72)) implies

f3XY = 0. (77)

Now (75) provides

f3XY = −
a0a

2
2b

2
1 − b1a0a1a2b2 − b1b0a1a

2
2 − 2b1a

2
0b3a2 + b1a0b3a

2
1 + a2

0a2b
2
2 − 2b2a0b0a

2
2

+ b2b0a
2
1a2 − b2a

2
0b3a1 + b2

0a
3
2 + 3b0b3a0a1a2 + a3

0b
2
3 − b0b3a

3
1

707 7888α2 discry(β2)2

(78)

(noting that 707 7888α2 discry(β2)
2 divides the numerator of this expression).

In the case where α = 0, δ �= 0 (else discrx(α2) = 0) and the vanishing left-hand side of
resµ(Fx,µ,Gx,µ)|α=0 = 16

δ2 f3XY

∣∣
α=0 ensures f3XY = 0. Further, Fx,µ|α=0, being affine in µ,

solves to give µ = µt |α=0.

Case 6. When z1 = z2 = z3 = x1 and Ci = Cx,i in (37), we have

−4x1 = Cx,3 (79)

6x2
1 = Cx,2 (80)

−4x3
1 = Cx,1 (81)

x4
1 = Cx,0. (82)

6 It is easily shown that

U = (a2
1b2

3 − a2a0b
2
3 − a2a1b3b2 + a2

2b3b1)µ
2 + (a2

1b3b2 − a1a0b
2
3 − a2a1b

2
2 + a2

2b2b1 − a2
2b3b0)µ

+ a2
0b2

3 − a1a0b3b2 + a2a0b
2
2 + a2

1b3b1 − 2a2a0b3b1 − a2a1b2b1 + a2
2b2

1 + a2a1b3b0 − a2
2b2b0

V = (a2
2a0b3 − a2a

2
1b3 + a2

2a1b2 − a3
2b1)µ − a3

1b3 + 2a2a1a0b3 + a2a
2
1b2 − a2

2a0b2 − a2
2a1b1 + a3

2b0.
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Clearly (79) ⇒ x1 = −Cx,3

4 = xm and case 2 ensures that x1 is a double root of P2X (implying
discrx(P2X) = 0), µ = µd,x and f2Xf2XY = 0. Direct substitution of (79) and (80) ensures
8Cx,2 − 3C2

x,3 = 0, which solves to give

µ = µ′ = −discry(β2)(ε
2 − 4βλ − 4δξ + 8γ κ) + 12f2X

8α discry(β2)
, (83)

assuming α �= 0. By case 5 we know 8Cy,2 − 3C2
y,3 �= 0, implying via the identity

8Cy,2 − 3C2
y,3

∣∣
µ=µ′ = 48f2XY

discrx(α2)2 discry(β2)

that f2XY �= 0 and hence f2X = 0. This reduces (83) to

µ = µ′ = (4βλ + 4δξ − ε2 − 8γ κ)

8α
. (84)

If α = 0, assuming f2XY = 0 (which is affine in λ) gives λ = λ′ and thus the contradiction
8Cy,2 − 3C2

y,3 = 0 via the identity β4δ2
(
8Cx,2 − 3C2

x,3

)∣∣
λ=λ′ = β2δ4

(
8Cy,2 − 3C2

y,3

)∣∣
λ=λ′

(recalling 8Cx,2 − 3C2
x,3 = 0 and noting that β2δ4 �= 0 else either α = β = 0 or α = δ = 0,

contradicting assumption 1).

Case 7. By following arguments identical to those employed in the previous case, it can be
shown that when z1 = z2 = z3 = y1 and Ci = Cy,i in (37), y1 = ym,µ = µd,y, discry(P2Y ) =
0 and f2Y = 0 but f2XY �= 0.

Case 8. The substitutions z1 = z2 = z3 = x1 and Ci = Cx,i in (37) on the one hand and
z1 = z2 = z3 = y1 and Ci = Cy,i on the other ensure x1 = xm and y1 = ym in this case. From
cases 6 and 7 it is clear that discrx(P2X) = discry(P2Y ) = 0, µ = µd,x = µd,y , and since
f2Xf2XY = 0 and f2Y f2XY = 0 (via cases 2 and 3), we also have f2XY = 0. �

2. Classification of singular curves and their geometry

In this section, we extend and strengthen the classifications in table 1 by providing sufficient
conditions for each of the ten possible ‘singularity scenarios’ associated with B = 0. We
invoke two corollaries (1 and 2) and several propositions (5)–(11) to prove the classification
given in table 2.

In providing necessary and sufficient conditions for each of cases 2–8 in this table,
our approach is to specify two types of parameter constraint: one that fixes µ in terms
of α, . . . , λ and a set of others in α, . . . , λ (typically involving such expressions as
f2X, f2Y , f2XY , f3XY , discrx(P2X) and discry(P2Y )) that enables us to target the particular
combination of factorizations of discry(B) and discrx(B) concerned. Due to their frequent
use in what follows, we remind the reader of where to locate various key quantities. The
expressions f2X, f2Y , f2XY are defined in (26)–(28), f3XY in (75), µd,x, µd,y and µt in
(34) and (74), and xm, ym, x∗, y∗ and P2X in (32), (33) and (48) respectively (recalling that
P2Y = V E(P2X)). We also ask the reader to recall assumptions 1 and 2.

Remark 5. Notice that while each of the example curves of B = 0—given in the rightmost
column of table 2—possesses singular points in R

2, the classification is more general, including
curves with affine singular points in C

2 (the #SP refers to complex affine singular points most
generally). Considering that any singular point with some coordinate in C − R cannot be
‘seen’ in the same manner as those depicted in table 2, we have chosen to illustrate the
geometric differences between the curves under investigation using examples possessing real
singular points only.
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Table 2. Conditions on the coefficients α, . . . , µ of (1) in order for B = 0 to be a singular curve.
There are ten classes based on the discriminant factorizations introduced in proposition 2. (#SP

stands for the number of singular points.)

Case no. (a, b, c)(d, e, f ) # SP Necessary and sufficient conditions on B = 0 of (1) Ref. Example

1 (2, 1, 1) (2, 1, 1) 1 discryx (B) = 0 Props 1 and 2

2 (2, 2, 0) (2, 1, 1) 2 µ = µd,x , f2X = 0, discrx (P2X) �= 0, αε − βδ �= 0 Coro. 1(a), (d), figure 2

3 (2, 1, 1) (2, 2, 0) 2 µ = µd,y , f2Y = 0, discry (P2Y ) �= 0, αε − βδ �= 0 Coro. 2(a), (d), figure 4

4a (2, 2, 0) (2, 2, 0) 2 µ = µd,x , f2XY = 0, f2X �= 0, discrx (P2X) �= 0 Prop. 7, figure 6

4b (2, 2, 0) (2, 2, 0) 3 µ = µd,x , f2X = f2Y = 0, discrx (P2X) �= 0, αε − βδ �= 0 Prop. 6, figure 5

4c (2, 2, 0) (2, 2, 0) 4 µ = γ κ

α
, f2X = f2Y = αε − βδ = 0, α �= 0 Prop. 5

5 (3, 1, 0) (3, 1, 0) 1 µ = µt , f3XY = 0, 8Cx,2 − 3C2
x,3 �= 0, 8Cy,2 − 3C2

y,3 �= 0 Prop. 8, figure 7

6 (4, 0, 0) (3, 1, 0) 1 µ = µd,x , f2X = discrx (P2X) = 0, f2XY �= 0 Prop. 9

7 (3, 1, 0) (4, 0, 0) 1 µ = µd,y , f2Y = discry (P2Y ) = 0, f2XY �= 0 Prop. 10

8 (4, 0, 0) (4, 0, 0) 1 µ = µd,x , f2XY = discrx (P2X) = 0 Prop. 11

Remark 6. The biquadratics under review have degree d = 4 and, as noted in remark 1,
possess two singular points at infinity (when considered projectively). Thus if a given curve
contains one affine singular point, it will have genus g = 1

2 (d − 1)(d − 2) − #SP = 0 (as in
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case 1 of table 2). When #SP � 2, however, the fact that the genus of an irreducible algebraic
curve must be non-negative implies that the biquadratic will be reducible, i.e. it will factor
into a product curve. This is evident in cases 2–4 of table 2.

Remark 7. We remind the reader of definition 3 of section 1 and remark 4 showing that
PE(B) = 0 is the reflection of B = 0 in the line y = x. This symmetry principle
obviates the need to prove every result represented in table 2 (specifically, it provides that
propositions 4 and 10 and corollary 2 follow from propositions 3 and 9 and corollary 1
respectively).

Remark 8. Before beginning the analysis to establish table 2, we consider the special case
when B = 0 is McMillan (4) and return to figures 1 and 2 where particular cases of table 2
were illustrated (also see figure 3). The expressions f2X, f2Y , f2XY and f3XY of (26)–(29)
are all expressions in K = {K2, . . . , Kq}. Considering that the 0-contour of discryx(BM)

is a hypersurface in C
q comprising the biquadratic’s singular parameter combinations (via

proposition 1), it is no coincidence that the singularities of discryx(BM) = 0, in turn, can be
related to f2X, f2Y , f2XY and f3XY (as the vanishing of at least one of these expressions is a
condition for cases 2–8 in table 2). In fact, it is easily shown that the discriminant with respect
to t of the quintic7, discryx(BM), in t is

discryxt (BM) = 184 467 440 737 095 516 16f 2
2Xf 2

2Y f 2
2XY f 3

3XY . (85)

This means that if K = K∗ is such that one of f2X, f2Y , f2XY or f3XY is zero, it is always
possible to find a pair (K, t) = (K∗, t∗) for which discryx(BM) = ∂

∂t
discryx(BM) = 0. It

is an interesting fact that in all of the examples we have considered, the vanishing of these
polynomials has guaranteed the vanishing of ∂

∂K2
discryx(BM), . . . , ∂

∂Kq
discryx(BM), meaning

that (K∗, t∗) represents a singular point of the contour discryx(BM) = 0 (seen as one of the
self-intersection points in figure 3, for example).

We begin by presenting two results that help to explain the geometry of B = 0 when it
contains more than one point of horizontal (lemma 6) or vertical (lemma 7) tangency. We shall
see that in each case the biquadratic decomposes to include a linear component (or subset,
specified by the factor (y − y ′) in the former case) and another, nonlinear, component (which
may itself decompose to include further linear components).

The proof of lemma 7 is similar to that of lemma 6 and is omitted.

Lemma 6.

(a) Suppose the biquadratic B = 0 of (1) contains the points P1 = (x1, y
′) and P2 = (x2, y

′)
with x1 �= x2 and ∂B

∂x
(Pi) = 0. Then f2X = 0 and

B = (y − y ′)(α2(y + y ′) + α1). (86)

(b) If there is a y = y ′ such that β2(y
′) = β1(y

′) = β0(y
′) = 0, then any point P = (x, y ′)

ensures B(P ) = ∂B
∂x

(P ) = 0.

Proof.

(a) First observe that
∂B

∂x
(x1, y

′) = 0 ⇔ 2β2(y
′)x1 + β1(y

′) = 0

∂B

∂x
(x2, y

′) = 0 ⇔ 2β2(y
′)x2 + β1(y

′) = 0
(87)

7 See lemma 5.
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together imply β2(y
′) = 0 and hence β1(y

′) = β0(y
′) = 0 also (using B(Pi) = 0 for

the latter). Recalling (6) it is clear that any point (x, y ′) lies on B = 0 and hence that
B = (y − y ′)(α2(y + y ′) + α1) (by the factor theorem). Further, we know by (30) that
f2X = 0.

(b) As for (a) β2(y
′) = β1(y

′) = β0(y
′) = 0 implies that B is of the form (86) and clearly

this guarantees B(P ) = ∂B
∂x

(P ) = 0 for any P = (x, y ′). �

Lemma 7.

(a) Suppose the biquadratic B = 0 of (1) contains the points P1 = (x ′, y1) and P2 = (x ′, y2)

with y1 �= y2 and ∂B
∂y

(Pi) = 0. Then f2Y = 0 and

B = (x − x ′)(β2(x + x ′) + β1). (88)

(b) If there is an x = x ′ such that α2(x
′) = α1(x

′) = α0(x
′) = 0, then any point P = (x ′, y)

ensures B(P ) = ∂B
∂y

(P ) = 0.

Proposition 3. The biquadratic B = 0 of (1) contains distinct points P1 = (x1, y
′) and

P2 = (x2, y
′) for which ∂B

∂x
(Pi) = 0 if and only if f2X = 0 and

(a) µ = µa,x = γ (βλ−γ κ)

β2 , assuming α = 0,

(b) µ is strictly one of µ±
b,x = (αλ−βκ)(β∓

√
discry (β2))+2αγ κ

2α2 , assuming α �= 0, αε − βδ = 0 and
αλ − βκ �= 0,

(c) µ = µc,x = γ κ

α
, assuming α �= 0 and αε − βδ = αλ − βκ = 0,

(d) µ = µd,x , assuming α �= 0 and αε − βδ �= 0.

Proof. For the necessary direction in each case, we assume P1 and P2 are defined as above.
Then lemma 6(a) ensures f2X = 0 and β2(y

′) = β1(y
′) = β0(y

′) = 0. To prove the sufficient
direction, we specify a y = y ′ which combines with the given parameter constraints to ensure
β2(y

′) = β1(y
′) = β0(y

′) = 0. The result will then follow by lemma 6(b).

(a) Assume α = 0 and note that neither β nor δ are zero in this case, else discry(β2) =
β2 − 4αγ = 0 or discrx(α2) = δ2 − 4ακ = 0, contradicting assumption 1. Now
β2(y

′) = 0 ⇒ y ′ = ya = − γ

β
, and solving for µ in β0(y

′) = 0 gives µ = µa,x .
Conversely, suppose µ = µa,x and f2X = 0. For y ′ = ya , we know from above that

β0(y
′) = 0. Also, β2(y

′) = αγ 2

β2 = 0 and β1(y
′) = f2X |α=0

δβ2 = 0.

(b) Assume α �= 0 and αε − βδ = 0 but αλ − βκ �= 0. When the y-zeros, y ′ = y±
b , of

β2 (‘+’ denoting the ‘+
√

’ solution) are substituted into β0(y
′) = 0, the µ-solutions

corresponding to them are µ±
b,x (where y+

b is paired with µ+
b,x)8. This means that µ is one

of µ+
b,x or µ−

b,x but not both due to

µ+
b,x − µ−

b,x = − (αλ − βκ)
√

discry(β2)

α2
�= 0. (89)

Conversely, suppose µ is one of µ+
b,x or µ−

b,x and f2X = 0. From above we know that
β0

∣∣
µ=µ±

b,x

(
y±

b

) = β2
(
y±

b

) = 0. Also,

β1
(
y±

b

) = (αε − βδ){±√
discry(β2) − β} + 2α(αξ − δγ )

2α2
= 0,

noting that f2X = αε − βδ = 0 ⇒ αξ − δγ = 0 by (26).

8 The identity B|µ±
b,x

= (y − y∓
b )(α2y + α2y

∓
b + α1) − {(αε−βδ)(β∓√

discry (β2))−2α(αξ−δγ )}x±2(αλ−βκ)
√

discry (β2)

2α2 =
(y − y∓

b )(α2y + α2y
∓
b + α1) ∓ 2(αλ−βκ)

√
discry (β2)

2α2 makes it clear that the combinations µ+
b,x , y−

b and µ−
b,x , y+

b are not
possible, else αλ − βκ = 0.
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(c) Assume α �= 0 and αε − βδ = αλ − βκ = 0. Then an argument similar to that in (b)
establishes µ = µc,x = µ+

b,x = µ−
b,x = γ κ

α
.

The converse is also true by (b). In this case, B’s representation is very simple:

B|µ=µc,x
= α2β2

α
. (90)

This is due to B|µ=µc,x

(
x, y±

c

) = ∂B
∂x

(
x, y±

c

) = 0, implying that
(
y − y+

c

)
and

(
y − y−

c

)
are distinct factors of B.

(d) Assume α �= 0 and αε − βδ �= 0. Then β2(y
′) = β1(y

′) = 0 solves to give y = y∗ and
β0(y

∗) = 0 implies

µ = µ2 = (αξ − δγ )(λ(αε − βδ) − κ(αξ − δγ ))

(αε − βδ)2
. (91)

That µ2 = µd,x in this case is due to the easily verified identity

µ2 − µd,x = f2X{[ε(αε−βδ)−β(αλ−κβ)−α(βλ−4κγ )]�+[2α(βξ−γ ε)−2γ (αε−βδ)]�}
�discry(β2)(αε−βδ)2 .

(92)

Conversely, suppose f2X = 0 and µ = µd,x = µ2 (by (92)). Then for y ′ = y∗, we know
by the above that β0|µ=µd,x

(y ′) = β0|µ=µ2
(y ′) = 0. Also, β2(y

′) = αf2X

(αε−βδ)2 = 0 and

β1(y
′) = δf2X

(αε−βδ)2 = 0. �

Note that when both of the factors in (86) are zero, (2α2y
′ + α1)(Pi) = ∂B

∂y
(Pi) = 0 and

so P1 and P2 are singular. Also observe that assumption 2 does not apply in cases (a) and (b)
as here � = 0 but � �= 0 and � = � = 0 respectively, via (31).

Corollary 1. The biquadratic B = 0 of (1) contains two distinct singular points P1 = (x1, y
′)

and P2 = (x2, y
′) if and only if f2X = 0 and

(a) (Case 2) µ = µa,x = γ (βλ−γ κ)

β2 and discrx(P2X) �= 0, assuming α = 0,

(b) µ is strictly one of µ±
b,x = (αλ−βκ)(β±

√
discry (β2))+2αγ κ

2α2 but discrx
(

∂B
∂y

∣∣
y=y+

b

) �= 0 in the

case where µ = µ+
b,x or discrx

(
∂B
∂y

∣∣
y=y−

b

) �= 0 in the case where µ = µ−
b,x , assuming

α �= 0, αε − βδ = 0 and αλ − βκ �= 0,
(c) µ = µc,x = γ κ

α
, assuming α �= 0 and αε − βδ = αλ − βκ = 0,

(d) (Case 2) µ = µd,x and discrx(P2X) �= 0, assuming α �= 0 and αε − βδ �= 0.

Proof. For the necessary direction, we only need to show (thanks to proposition 3) that
discrx(P2X) �= 0 in cases (a) and (d) and that discrx

(
∂B
∂y

∣∣
y=y±

b

) �= 0 when µ = µ±
b,x in case (b).

To prove the sufficient direction, it is enough to specify a y = y ′ and distinct x1, x2 for which
∂B
∂y

(xi, y
′) = 0 (again thanks to proposition 3).

(a) Assume α = 0. Then case 2 of proposition 2 ensures that x1, x2 are the zeros of P2X,
whose distinctness guarantees discrx(P2X) �= 0.

Conversely, suppose µ = µa,x, f2X = 0 and discrx(P2X) �= 0. When y ′ = ya and
x1, x2 are the distinct zeros of P2X, we have ∂B

∂y
(xi, y

′) = 2f2X |α=0

β3 = 0.
(b) Assume α �= 0, αε − βδ = 0 and αλ − βκ �= 0. In the case where µ = µ+

b,x and
y ′ = y+

b , the fact that x1, x2 are the distinct zeros of the quadratic, ∂B
∂y

∣∣
y=y+

b

, in x ensures

discrx
(

∂B
∂y

∣∣
y=y+

b

) �= 0.

Conversely, if µ = µ+
b,x and f2X = 0 but discrx

(
∂B
∂y

∣∣
y=y+

b

) �= 0, then when y ′ = y+
b

and x1, x2 are the distinct zeros of ∂B
∂y

∣∣
y=y+

b

, we clearly have ∂B
∂y

(
xi, y

+
b

) = 0. A similar

argument applies for the µ−
b,x, y

−
b pairing.
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(c) Assume α �= 0 and αε − βδ = αλ − βκ = 0. The necessary direction is already covered
by proposition 3, so for the converse we suppose µ = µc,x, f2X = 0, y ′ = y±

b and let x±
b

be the x-zeros of α2 (distinct due to assumption 1, with ‘+’ denoting the ‘+
√

’ solution).

By (90), we know that B|µ=µc,x
= α2β2

α
and so clearly ∂B

∂y

(
x±

b , y ′) = α2(x
±
b )

α

∂β2

∂y
(y ′) = 0.

(d) Assume α �= 0 and αε − βδ �= 0. The fact that discrx(P2X) �= 0 is as in (a).
Conversely, suppose f2X = 0, µ = µd,x = µ2 (by (92)) and discrx(P2X) �= 0. Let

x1, x2 be the distinct zeros of P2X and y ′ = y∗. Then since

∂B

∂y

∣∣∣∣
y=y∗

= P2X − 2 ∂α2
∂x

f2X

(αε − βδ) discry(β2)
= P2X

(αε − βδ) discry(β2)
, (93)

it is clear that ∂B
∂y

(xi, y
′) = 0. �

Proposition 4 and corollary 2 are a straightforward consequence of proposition 3 and
corollary 1 and the symmetry principle noted in remark 6.

Proposition 4. The biquadratic B = 0 of (1) contains distinct points P1 = (x ′, y1) and
P2 = (x ′, y2) for which ∂B

∂y
(Pi) = 0 if and only if f2Y = 0 and

(a) µ = µa,y = PE(µa,x), assuming α = 0,
(b) µ is strictly one of µ±

b,y = PE
(
µ±

b,x

)
, assuming α �= 0, αε − βδ = 0 and αξ − δγ �= 0,

(c) µ = µc,y = γ κ

α
, assuming α �= 0 and αε − βδ = αξ − δγ = 0,

(d) µ = µd,y , assuming α �= 0 and αε − βδ �= 0.

Corollary 2. The biquadratic B = 0 of (1) contains two distinct singular points P1 = (x ′, y1)

and P2 = (x ′, y2) if and only if f2Y = 0 and

(a) (Case 3) µ = µa,y = PE(µa,x) but discry(P2Y ) �= 0, assuming α = 0,8

(b) µ is strictly one of µ±
b,y = PE

(
µ±

b,x

)
but discry

(
∂B
∂x

∣∣
x=x+

b

) �= 0 in the case where µ = µ+
b,y

or discry
(

∂B
∂x

∣∣
x=x−

b

) �= 0 in the case where µ = µ−
b,y , assuming α �= 0, αε − βδ = 0 and

αξ − δγ �= 0,
(c) µ = µc,y = γ κ

α
, assuming α �= 0 and αε − βδ = αξ − δγ = 0,

(d) (Case 3) µ = µd,y and discry(P2Y ) �= 0, assuming α �= 0 and αε − βδ �= 0.

Example 3. The McMillan biquadratic (5) yields

f2Y = 746 3287

156 25
+

348 72201

312 50
K +

579 447 33

625 00
K2 +

403 715 31

125 000
K3

+
134 991

3125
K4 +

240 267

125 000
K5, (94)

which vanishes at K ≈ −2.0029. We also have µ = µd,y ≈ 0.5287, giving t = µM − µ ≈
−1.5317 (see (4)), discry(P2Y ) ≈ 3.1520, α = 2 and αε−βδ ≈ 6.0526. Figure 4 illustrates the
fact that the line x = x∗ ≈ 0.0661, which contains the two singularities P1 ≈ (0.0661, 2.2152)

and P2 ≈ (0.0661,−13.6632), is a subset of the singular level set9.

Proposition 5 (Case 4c). The biquadratic B = 0 of (1) contains exactly four distinct singular
points if and only if α �= 0, µ = γ κ

α
and αε − βδ = f2X = f2Y = 0.

Proof. First note that by proposition 1(c), the maximum possible number of singular points
possessed by B = 0 is 4. Suppose P1, P2, P3, P4 ∈ BS are distinct. By proposition 2

9 That the four asymptotes (see the discussion preceding lemma 8) associated with BM = 0 in this example are given
by x = ±x∗ and y = ±x∗ is due to the atypical nature of the biquadratic: β = δ = 0 and γ = κ ensure that when y

is replaced with x in β2, α2 = β2.
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P1

P2

Figure 4. Illustration of case 3 of table 2 (see corollary 2(d)).

these points share exactly two x-coordinates and two y-coordinates, meaning that we can put
P1 = (x1, y1), P2 = (x2, y1), P3 = (x2, y2) and P4 = (x1, y2) with x1 �= x2, y1 �= y2. By
lemmas 6(a) and 7(a) we know that f2X = f2Y = 0 and βi(y1) = βi(y2) = 0, i = 0, 1, 2.
Manipulating the latter gives (y1 −y2)[α(y1 +y2)+β] = 0 ⇒ α �= 0 (else β = discry(β2) = 0
contradicting assumption 1). Also, eliminating y1 and y2 gives αε−βδ and hence αλ−βκ = 0
by (27). Now corollary 1(c) ensures µ = γ κ

α
.

Conversely, suppose α �= 0, µ = γ κ

α
and αε − βδ = f2X = f2Y = 0. The latter implies

αλ − βκ = 0 by (27) and hence B = α2β2

α
by the proof of corollary 1(c). This ensures that

when x1 = x+
b , x2 = x−

b , y1 = y+
b and y2 = y−

b (the coordinate-wise distinct zeros of α2 and
β2 respectively), Pi ∈ BS . �

Proposition 6 (Case 4b). The biquadratic B = 0 of (1) contains exactly three distinct singular
points if and only if µ = µd,x, f2X = f2Y = 0, discrx(P2X) �= 0 and αε − βδ �= 0.

Proof. Suppose P1, P2, P3 ∈ BS are distinct. By proposition 1(c) these points are
made up of exactly two x-coordinates and two y-coordinates, meaning that we can put
P1 = (x1, y1), P2 = (x2, y1) and P3 = (x1, y2), with x1 �= x2 and y1 �= y2. It follows
by corollaries 1 and 2 that f2X = f2Y = 0. We consider two cases on α.

If α = 0 then µ = µd,x by corollary 1(a), noting that µa,x = µ2|α=0 = µd,x |α=0 by (92).
Further, αε − βδ �= 0 else either β = discry(β2) = 0 or α = discrx(α2) = 0, contradicting
assumption 1. If α �= 0 then assuming αε − βδ = 0 gives αλ − βκ = 0 by (27) and hence
µ = µc,x by corollary 1(c). But this implies the existence of a fourth singular point distinct
from P1, P2 and P3 (via proposition 5), which is a contradiction. Thus αε − βδ �= 0 and
corollary 1(d) provides µ = µd,x . The fact that discrx(P2X) �= 0 in both cases is due to (a)
and (d) of corollary 1.

Conversely, suppose µ = µd,x, f2X = f2Y = 0, discrx(P2X) �= 0 and αε − βδ �= 0. First
observe that since f2XY = 0 by (28), µd,x = µd,y by (56). It follows by propositions 3(d) and
4(d) in combination with lemmas 6(b) and 7(b) that B factorizes to become

B = (x − x∗)(y − y∗)(αxy + (αy∗ + β)x + (αx∗ + δ)y + αx∗y∗ + βx∗ + δy∗ + ε). (95)

Thus ∂B
∂x

= (y − y∗)Q with Q = 2αxy + 2(αy∗ + β)x + δy + δy∗ + ε and ∂B
∂y

= V E
(

∂B
∂x

)
,

and so considering that Q(x∗, 2ym − y∗) = − 4f2Y

discrx (α2)(αε−βδ)
= 0 and similarly V E(Q) = 0,

it is clear that each of the points P1 = (x∗, y∗), P2 = (x∗, 2ym − y∗) and P3 = (2xm − x∗, y∗)
belongs to BS . Proposition 2 now ensures that x∗, 2xm − x∗ are the zeros of P2X, distinct due

22



J. Phys. A: Math. Theor. 41 (2008) 115203 J Pettigrew and J A G Roberts

P1 P2

P3

Figure 5. Illustration of case 4b of table 2 (see proposition 6). Since for any B = 0 satisfying the
conditions of proposition 6, α2(x

∗) = αf2Y

(αε−βδ)2 = 0 and β2(y
∗) = αf2X

(αε−βδ)2 = 0, it is clear that

two of the four asymptotes of the biquadratic (see the discussion preceding lemma 8) are wholly
contained in the singular curve.

to discrx(P2X) �= 0 and that y∗, 2ym − y∗ are the zeros of P2Y , distinct due to discry(P2Y ) �= 0
using the identity

discrx(α2)
2 discrx(P2X) − discry(β2)

2 discry(P2Y ) = Pf2XY , (96)

where P is a 32-term expression in α, . . . , λ with the leading term 64(κξ 2 − γ λ2)α5 in α.
The existence of a fourth singular point not equal to any Pi would contradict our

assumption that αε − βδ �= 0 (via proposition 5). �

Example 4. Taking the resultant with respect to K2 of f2X and f2Y associated with the
biquadratic

B = (2K2 + 1)x2y2 +
(
K2

3K3 − K2
2 − 2K2 + 1

)
x2y + xy2 + (K2

3 + 9K2
2 + 27K2 + 12)x2

+ (3K2c + 6)y2 + xy + (K2 + 1)x − (
8K2

3 + 42K2
2 + 36K2 − 6

)
y + 17K2

3

+ 24K2
2 + 87K2 + 3 − t (97)

gives a degree-42 polynomial in K3, one of whose zeros is K3 ≈ −0.8599 (noting that both
f2X and f2XY are bivariate in K2 and t).

Back substitution provides K2 ≈ −2.9401 and using discryx(B) = 0 gives t ≈ −511.2514.
We also have µ = µd,x = µd,y ≈ 33.8870. Figure 5 illustrates that B = 0 contains the lines
x = x∗ ≈ −1.5691 and y = y∗ ≈ 0.9799 and the three singularities P1 = (x∗, y∗), P2 =
(2xm − x∗, y∗) ≈ (1.2879, 0.9799) and P3 = (x∗, 2ym − y∗) ≈ (−1.5691, 2.8231). Observe
that despite the fact that 2xm − x∗ and 2ym − y∗ are multiple roots of discry(B) and discrx(B)

respectively, the pair (2xm − x∗, 2ym − y∗) is not singular.

Proposition 7 (Case 4a). The biquadratic B = 0 of (1) contains exactly two distinct singular
points P1 = (x1, y1) and P2 = (x2, y2) for which x1 �= x2 and y1 �= y2 if and only if
µ = µd,x, f2XY = 0, f2X �= 0 and discrx(P2X) �= 0.

Proof. Suppose P1, P2 ∈ BS satisfy the above. Cases 2 and 3 of proposition 2 ensure
µ = µd,x = µd,y, f2Xf2XY = 0, and x1, x2 and y1, y2 are the zeros of P2X and P2Y respectively
(whose distinctness implies discrx(P2X) �= 0 and discry(P2Y ) �= 0). We shall prove that
f2X �= 0 by contradiction. First, the assumption that f2X = 0 ensures αε − βδ �= 0 else
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� = 0 by (31). Further, α = 0 implies µ = µd,x = µa,x (see the proof of proposition 5) and
so y1 = y2 by corollary 1(a), contradicting the distinctness of y1 and y2. Similarly, α �= 0
combined with αε − βδ �= 0 and µ = µd,x yields the contradiction y1 = y2 by corollary 1(d).

Conversely, suppose µ = µd,x, f2XY = 0 but f2X �= 0 and discrx(P2X) �= 0. Let x1, x2 be
the distinct zeros of P2X. Then (43), (44), (46) and P ′

2X = 0 of (47) are all valid and combine
to ensure (39)–(42), and hence x1 and x2 are double roots of discry(B). Proposition 1(b) now
ensures that for y1 = − α1(x1)

2α2(x1)
and y2 = − α1(x2)

2α2(x2)
, P1 = (x1, y1) and P2 = (x2, y2) belong to

BS (noting that α2(xi) �= 0 else discry(B)(xi) = 0 ⇒ α1(xi) = 0 ⇒ f2Y = 0 by (30) and this
would imply f2X = 0 by (26)). The distinctness of y1 and y2 is due to lemma 6 (which would
otherwise establish that f2X = 0).

The existence of a third singular point not equal to either P1 or P2 would contradict our
assumption that f2X �= 0 (via proposition 6). �

An interesting geometric phenomenon related to proposition 7 is illustrated with the aid
of the zeros, x±

b and y±
b , of α2 and β2 respectively. By (6) it is clear that for fixed parameters

K1, . . . , Kq , the lines x = x±
b and y = y±

b represent the vertical and horizontal asymptotes of
(1) respectively. Each of the two lines joining the diagonally opposed intersections of these
asymptotes has a finite non-zero gradient whose square is

M = discry(β2)

discrx(α2)
. (98)

The following result shows that the line connecting the points Pi of proposition 7 is
parallel to one of these diagonal ‘asymptote’ lines (see figure 6).

Lemma 8. Suppose P1 and P2 are singular points of (1) satisfying the conditions of
proposition 7. Then the gradient of the line joining these points is equal to the gradient
of one of the diagonal lines joining

(
x−

b , y−
b

)
,
(
x−

b , y+
b

)
,
(
x+

b , y−
b

)
and (x+

b , y+
b ).

Proof. First note that by the proof of proposition 7, f2XY = 0 and xi and yi of P1 and P2

satisfy the identities (39)–(42) and their analogues for discrx(B)/discrx(α2) respectively. It is
enough to show that for G = [(y2 − y1)/(x2 − x1)]2,G − M = 0 (recalling (98)).

In the case where Cx,3 �= 0 and Cy,3 �= 0, we have

G =
(

y2 − y1

x2 − x1

)2

= (y1 + y2)
2 − 4y1y2

(x1 + x2)2 − 4x1x2
= (Cy,3Cy,2 − 6Cy,1)Cx,3

(Cx,3Cx,2 − 6Cx,1)Cy,3
, (99)

and the result follows by

G − M = (Cy,3Cy,2 − 6Cy,1)Cx,3

(Cx,3Cx,2 − 6Cx,1)Cy,3
− discry(β2)

discrx(α2)

= −12 discry(β2) [α(βξ − γ ε) − γ (αε − βδ)] �f2XY

ym discrx(α2)2 discrx(P2X)
= 0.

In the case where Cx,3 = 0 but Cy,3 �= 0, we have Cx,2 �= 0, µ = µ′, ξ = ξ ′ of case 2 of
proposition 2, and

G − M = − (Cy,3Cy,2 − 6Cy,1)discrx(α2) + 2Cy,3Cx,2discry(β2)

2Cy,3Cx,2discrx(α2)

∣∣∣∣
(µ,ξ)=(ξ ′,µ′(ξ ′))

= 12εf2XY |ξ=ξ ′

δCy,3Cx,2 discrx(α2)2 discry(β2)
= 0.

Similar computations show that G − M = 0 in the cases where Cy,3 = 0 but Cx,3 �= 0
and Cx,3 = Cy,3 = 0. �
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P1

P2

A1

A2

Figure 6. Illustration of case 4a of table 2 (see proposition 7 and lemma 8). When µ = µd,x

and f2XY = 0 but f2X �= 0 and discrx(P2X) �= 0, (1) possesses precisely two singular points,
P1 = (x1, y1) and P2 = (x2, y2) whose corresponding coordinates lie around the midpoints xm

and ym (as in (46) and (54)). The gradient of the line connecting P1 and P2 (which equals −√
M

recalling (98)) is identical to that of the line joining A1 and A2.

Example 5. The biquadratic

B = Kx2y2 + ((K − 1)t3 − K2 + 1)x2y − xy2 + x2 + y2 + (K + 2)x − y + K − t = 0 (100)

(which is neither QRT nor McMillan) yields

f2XY = (4K3 − 1 − 6K2 + 4K − K4)t12 + (−14K4 + 4K5 − 7K + 3 + 15K3 − K2)t9

+ (−6K4 − 5 + 18K5 − 13K3 − 3K2 − 6K6 + 15K)t6

+ (4K7 − 12K2 − 9K5 + 5 − 10K6 − 17K + 5K4 + 34K3)t3

− 1 + 5K + K5 − 28K3 − K8 − 34K4 + 6K2 + 2K7 + 6K6. (101)

The polynomial rest (f2XY , 4discry(β2)�(µ − µd,x)) is univariate in K, one of whose roots is
K ≈ −1.8144. Back substitution provides t ≈ −1.0274 and thus µd,x ≈ −0.7870. Figure 6
makes it clear that the line joining A1 = (

x−
b , y+

b

) ≈ (−1.0675, 0.9809) and A2 = (
x+

b , y−
b

) ≈
(0.5163,−0.5619) is parallel to that which joins the two singularities P1 ≈ (−1.0405, 1.1592)

and P2 ≈ (0.6993,−0.5355). Clearly (xm, ym) ≈ (−0.1706, 0.3118) is the midpoint of P1

and P2.

Proposition 8 (Case 5). The biquadratic B = 0 of (1) contains a singular point P = (x1, y1)

for which x1 and y1 are triple but not quadruple roots of discry(B) and discrx(B) respectively
if and only if µ = µt, f3XY = 0, 8Cx,2 − 3C2

x,3 �= 0 and 8Cy,2 − 3C2
y,3 �= 0.

Proof. The necessary direction is a restatement of case 5 of proposition 2 (recalling that
8Cx,2 − 3C2

x,3 �= 0 and 8Cy,2 − 3C2
y,3 �= 0 are a consequence of the triple root conditions on

x1 and y1 respectively).
For the sufficient direction, let µ = µt, f3XY = 0, put 8Cx,2 − 3C2

x,3 �= 0 and
8Cy,2 − 3C2

y,3 �= 0 and define x1 = xt (of (66)), x2 = −3xt − Cx,3. It is easily verified
that f3XY divides both Fx,µ(µt ) and Gx,µ(µt ) (of (70) and (73)) and so (68) and (71) are valid.
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P

Figure 7. Illustration of case 5 of table 2 (see proposition 8).

Now

−3x1 − x2 − Cx,3 = 0

3x2
1 + 3x1x2 − Cx,2 = − G′

x,µ(
8Cx,2 − 3C2

x,3

)2 = 0

−x3
1 − 3x2

1x2 − Cx,1 =
(
C3

x,3 − 16Cx,1
)
G′

x,µ

2
(
8Cx,2 − 3C2

x,3

)3 = 0

x3
1x2 − Cx,0 = x3

1x2 − 1

12

(
3Cx,3Cx,1 − C2

x,2

)
(using (68))

= SG′
x,µ

24
(
8Cx,2 − 3C2

x,3

)4 = 0,

(102)

where S = 60C4
x,3Cx,2 − 9C6

x,3 + 36C3
x,3Cx,1 − 156C2

x,3C
2
x,2 + 48Cx,3Cx,2Cx,1 + 128C3

x,2 −
432C2

x,1, confirm that x1 is a triple root of discry(B) (by running (60)–(63) in reverse). It is
not a quadruple root else xt = xm would be a double root of (64), implying 8Cx,2 −3C2

x,3 = 0.

By defining10 ŷ1 = − α1(x1)

2α2(x1)
, we know by the proof of proposition 1(b) that (x1, ŷ1) ∈ BS .

It follows by (57) that ŷ1 is a triple root of discrx(B). It is not a quadruple root of this
discriminant else ŷ1 = ym would be a double root of (64)’s correspondent in y, implying
8Cy,2 − 3C2

y,3 = 0. �

Example 6. For the biquadratic

BQRT = ((−3K2 − 2K + 1)t − 3K + 1)x2y2 + ((8K + 21)t − 17K2 + 41K − 1)x2y

+ ((2K − 1)t + 3K2 − 4)xy2 + ((K2 − 2)t − 27K + 12)x2

+ ((K − 1)t − 3K + 4)y2 + ((87K + 3)t + 2K3 − 3K + 5)xy + (Kt − 17)x

+ ((−K2 + 6)t − K5 + 2)y + K2 − 2 − t, (103)

10 The following argument shows that α2(x1) �= 0. By the proof of proposition 1(b) we know that α2(x1) = 0 ⇒
∂B
∂y

(x1, y) = B(x1, y) = 0 for any y, and so f2Y = 0, µ = µd,y and x1 = x∗ by proposition 4(d), assuming neither
α nor αε − βδ is zero (cases that can be dealt with in a similar manner to the forthcoming). Now if (x1, y) ∈ BS , it is
clear by applying V E to both sides of (93) that y is a zero of P2Y . The fact that there can be only one such y-solution
(recalling (57) and the discussion that follows it) implies that discry(P2Y ) = 0. Now a contradiction is drawn via the
identity (8Cy,2 − 3C2

y,3)|µ=µd,y
= −4discry(P2Y )/(discrx(α2)

2�2).
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f3XY consists of 791 terms (degree 16 in t, 50 in K). The polynomial rest

(
f3XY ,

(
b1a

2
2 +

b3a
2
1 − b2a1a2 − b3a0a2

)
(µ − µt)

)
(recalling (74)) is univariate in K (degree 144) and

vanishes at K ≈ −0.3054. Back substitution gives t ≈ 2.5553, and so also µt ≈ −4.4620.
Note that 8Cx,2 − 3C2

x,3 ≈ −2.0240 and 8Cy,2 − 3C2
y,3 ≈ −19.3342 are non-zero and as

figure 7 makes clear, the singularity P = (xt , yt ) ≈ (1.1307,−3.1920) is a cusp. In fact, it
is easily shown that for B+

y = (−α1 +
√

discry(B))/2α2, the gradient of the cuspidal tangent,

found by calculating limh→0
B+

y (x1+h)−B+
y (x1)

h
, is

mc = ∂

∂x

(
− α1

2α2

)∣∣∣∣
x=xt

= 1
∂
∂y

(− β1

2β2

)∣∣∣
y=yt

= −
√

β2

α2

∣∣∣∣∣
(x,y)=(xt ,yt )

≈ −8.3465.11

Proposition 9 (Case 6). The biquadratic B = 0 of (1) contains a singular point P = (x1, y1)

for which x1 is a quadruple root of discry(B) and y1 is a triple (but not a quadruple) root of
discrx(B) if and only if µ = µd,x, f2X = discrx(P2X) = 0 and f2XY �= 0.

Proof. The necessary direction is covered by case 6 of proposition 2. For the sufficient
direction we put µ = µd,x, f2X = discrx(P2X) = 0, f2XY �= 0 and define x1 = x2 = xm =
−Cx,3

4 . It is clear that (43), (44) and

discrx(P
′
2X) = discrx(P2X)|µ=µd,x

= Cx,3
(
C3

x,3 − 16Cx,1
) = 0

all hold (referring to (47) for the latter). These identities readily confirm that (39)–(42) are
valid and hence that x1 is a quadruple root of discry(B).12 The identity

4

discry(β2)�2
discrx(P2X) + discrx(α2)

(
8Cy,2 − 3C2

y,3

)∣∣
µ=µd,x

= 48f2XY

discrx(α2) discry(β2)

establishes that 8Cy,2 − 3C2
y,3 �= 0 and so by footnote 10 we know α2(x1) �= 0. Now

proposition 1(b) ensures that when y1 = − α1(x1)

2α2(x1)
, (x1, y1) ∈ BS , and so it follows by (57)

that y1 is a triple root of discrx(B). It is not a quadruple root of this discriminant, else
y1 = ym = −Cy,3

4 and the formulae for discrx(B) that correspond to (79) and (80) would give
the contradiction 8Cy,2 − 3C2

y,3 = 0. �

Proposition 10 is a straightforward consequence of proposition 9 and the symmetry
principle noted in remark 6.

Proposition 10 (Case 7). The biquadratic B = 0 of (1) contains a singular point P = (x1, y1)

for which y1 is a quadruple root of discrx(B) and x1 is a triple (but not a quadruple) root of
discry(B) if and only if µ = µd,y, f2Y = discry(P2Y ) = 0 and f2XY �= 0.

Proposition 11 (Case 8). The biquadratic B = 0 of (1) contains a singular point P = (x1, y1)

for which x1 and y1 are quadruple roots of discry(B) and discrx(B) respectively if and only if
µ = µd,x and f2XY = discrx(P2X) = 0.

Proof. The necessary direction is covered by case 8 of proposition 2, and for the sufficient
direction it is clear via propositions 9 and 10 that x1 = xm and y1 = ym of P = (x1, x2) ∈ BS

satisfy the required multiplicity conditions. �
11 The fact that B’s tangent, y = mc(x − xt ) + yt ≈ −8.3465x + 6.2450, at (xt , yt ) intersects the biquadratic in a
triple root (namely, x = xt ) is what defines this point as a cusp.
12 This is true regardless of whether Cx,3 = 0.
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